Original scientific paper 10.7251/AGSY1404501S

WEEDS SEED BANK RICHNESS IN MAIZE FIELD: EFFECTS OF CROP ROTATION AND HERBICIDES

Milena SIMIC*, Igor SPASOJEVIC, Milan BRANKOV, Vesna DRAGICEVIC

Maize Research Institute ZemunPolje, Belgrade, Serbia *Corresponding author: smilena@mrizp.rs

Abstract

Crop rotation is important measure within Integrated Weed Management System. Sequences with row and grain crops, legumes and cereals influence weed community composition and seed bank richness. Cropping system diversification through extended rotation sequences contribute to reductions in weed sandbanks which determination in arable fields can facilitate to prediction of the future weed problems. This study assessed the effects of cropping system – continuous cropping, two and three crop rotations, and different weed management practices (application of full recommended herbicide dose and half that dose, weed removal by hoeing and weedy check) on weed seed bank richness in maize field.

Soil sampling for seed bank counting was carried out on the sowing and harvest time in 2012 and 2013. Soil samples were collected from the upper soil layer, with shovel 10x10 cm in a base and 4 cm deep. The average 200 g soil sample was washed inside special designed cylinders made from sieves mesh (0.2 mm), in order to separate weed seeds which were counted and identified by species under a magnifying glass (\times 10).

The most abundant were broadleaf annual weed species *Chenopodium* sp., *Amaranthus* sp. and *Datura stramonium*. The highest number of total weed seeds was identified in maize continuous cropping and the lowest number in three crop rotation maize-wheat-soybean in both years. Application of different amounts of herbicides did not affect weed seed bank richness in the first 3-4 years of crop rotation. Processes which affects the weed seed bank in the fields are complex and vary according to production practices.

Key words: weed seed bank, crop rotation, herbicides, maize

Introduction

Weed seeds placed in and on the soil, are the primary cause of weed infestation in maize fields. Seed bank richness is changeable and many processes influence seed additions and losses in the soil through time and system of production (Mohler, 2001). Herbicide application is a usual practice in maize weed control, but occurrence of resistant biotypes and invasive weeds, prevalence of troublesome weed species and increasing of weed seed bank richness, are the most important consequences of limitation in cropping systems, a lack of rotation of herbicide chemistry or sites of action and a limitation in weed control techniques (Menne and Köcher, 2012). Weed seed bank determination in arable fields can contribute to prediction of the future weed problems. Crop rotation is important measure within Integrated Weed Management System (IWMS), (Swanton and Weise, 1991). Requirements in maize growing are nowadays still high and there are many reasons for very intensive and profitable maize production. That forces maize continuous growing with positive effects on economy and many negative effects on environment and agro-phytocenoses, especially weed community. Cropping system diversification through the use of longer rotations of dissimilar crops can increase the mortality factors that regulate weed population dynamics and can facilitate effective weed control with reduced rates of applied herbicides (Liebman et al.,

2014). Sequences with row and grain crops, legumes and cereals influence weed community composition, abundance of individuals and soil seed bank richness (Teasdale et al., 2004; Bohan et al., 2011). Rotations facilitate the rotation of herbicides with the ability to control different weed species. Previous studies have documented reductions in weed seed banks due to cropping system diversification through extended rotation sequences (Schreiber, 1992; Teasdale et al., 2004). The alternation of crops breaks the life cycle and prevents a high distribution of any single weed species (Bastiaans, 2010). This study assessed the effects of cropping system – continuous cropping, two and three crop rotation, and different weed management methods including herbicide application, on weed seed bank richness in maize field.

Material and methods

A long-lasting field experiment have started in 2009, as a split-plot trial in the Maize Research Institute Zemun Polje, at the vicinity of Belgrade (44°52'N 20°20'E), Serbia. The main plots encompassed the following plant production systems: maize continuous cropping (MC), maize–wheat rotation (MW), maize-wheat-soybean (MWS) and maize–soybean–wheat rotation (MSW). The hybrid ZP606, wheat variety Takov anka and soybean variety Lana were conventionally sown within optimal periods in all the production systems. Conventional tillage was applied in the trial. A total of 30 t ha⁻¹ of manure was incorporated in the autumn of 2008 in MW, MWS and MSW systems and then every third year. In the autumn of 2008 and 2010, 20 t ha⁻¹ of manure was incorporated in the two-crop rotation and every second year thereafter. Immediately, prior to ploughing, 150 kg ha⁻¹ of MAP fertilizer (N:P = 11:52) was added. Crop side dressing was performed according to the results obtained by the analysis of the available nitrogen in soil in the 5–6 leaf stage of maize.

The sub-plot treatments were represented by different weed management methods applied in maize: (RD) herbicide application of isoxaflutole + acetochlorat recommended dose (105 g a.i. + 1536 g a.i.) and half that dose (1/2 RD)(52.5 g a.i. + 768 g a.i.), hand hoeing treatment (weed free) and weedy check (weeds stayed throughout vegetation). Each sub-treatment had four replications. In wheat and soybean, the usual combination of herbicides for broadleaf and grass weed control was applied. At the beginning of the experiment, samples were taken only from different cropping systems, excluding herbicide treatments.

The elementary plot size was 28 m^2 and soil sampling (three soil sample cores from each elementary plot) for seed bank counting was carried out on the sowing (middle of May) and harvest time (middle of September) in 2012 and 2013. Soil samples were collected from the upper soil layer, with shovel 10x10 cm in a base and 4 cm deep. The average 200 g soil sample was washed inside special designed cylinders made from sieves mesh (0.2 mm), in order to separate weed seeds which were identified and counted by species under a magnifying glass (×10).

Results and discussion

Total number of weed seeds was different between cropping systems in 2009, and, in average, lower in autumn (2958.5 seeds/m²) than in spring (3850.0 seeds/m²), Table 1. Maize crop was grown in all four fields and differences in weed seed richness between cropping systems, at the beginning of the experiment, are probably occurred as a results of previous agricultural practice. Number of seeds in 2009 was higher for all cropping systems than in 2012 and 2013.

Weed species	Cropping system					
	MC	MW	MWS	MSW	Average	
		Spring				
Chenopodium sp.	2880	1530	1130	1500	1760.0	
Amaranthus sp.	2780	1180	950	2450	1840.0	
Daturastramonium		75	200	125	92.5	
Abuthilontheophrasti	25	50			18.8	
Ambrosia artemisiifolia	50				12.5	
Atriplexpatula	150	180	75	50	113.8	
Bilderdykia convolvulus			25	25	12.5	
Total	5885	3015	2380	4150	3850.0	
		Autumr	1			
Chenopodium sp.	1250	530	630	850	820.0	
Amaranthus sp.	2725	1630	600	1775	1682.5	
Daturastramonium	75		100	300	118.8	
Convolvulus arvensis				100	25.0	
Atriplexpatula	800	100	250		287.5	
Bilderdykia convolvulus		25	50	25	25.0	
Total	4850	2285	1630	3050	2958.5	

Table 1. Number of weed seeds (No of seeds/m²) in different cropping systems in 2009

In spring 2012, the significantly highest average number of weed seeds was identified in maize continuous cropping (6425.0 seeds/m²), Table 2. Application of herbicides affected weed seed bank richness and the highest number of seeds was identified in untreated control, in almost all production systems. Very effective in decreasing of weed seed bank richness was weed free treatment in which the lowest number of weed seeds was identified. But, differences in amounts of herbicides did not significantly affect weed seed bank richness in the first 3-4 years of crop rotation. The most distributed were broadleaf annual weed species *Chenopodium* sp., *Amaranthus* sp. and *Datura stramonium*. *Amaranthus* sp. accounted for 57.1% in total weed seeds number in MW rotation and 59.0% in MWS rotation.

Table 2. Number of weed seeds (No of seeds/ m^2) in different cropping systems in spring	
2012	

Weed species	Herbicide treatments							
	Weedy check	RD	¹∕2 RD	Hoeing	Average			
Maize continuous cropping								
Chenopodium sp.	3150	2950	2275	2550	2731.3			
Amaranthus sp.	5775	3675	2125	2075	3412.5			
Daturastramonium	300	175	125	200	200.0			
Abuthilontheophrasti	25		25		12.5			
Setariaviridis	25				6.3			
Hibiscus trionum	50				12.5			
Polygonumconvolvulus	25	125	25		43.8			
Sinapisarvense		25			6.3			
Total	9350	6950	4575	4825	6425.0 a			
	Maize	wheat rotat	ion					
Chenopodium sp.	1650	1100	1400	875	1256.3			
Amaranthus sp.	3775	1675	2025	1175	2162.5			
Daturastramonium	225	250	275	300	262.5			
Polygonum convolvulus	50	50		175	68.8			

Fifth International	Scientific Agricultural	l Symposium	Agrosvm 2014"
			,, o - j -

Convolvulus arvensis	25	25	50	25	31.3			
Abutilon theophrasti			25		6.3			
Total	5725	3100	3775	2550	3787.5 b			
	Maize	e- Wheat-Soyb	ean					
Chenopodium sp.	1350	1350	1025	875	1150.0			
Amaranthus sp.	1350	2000	1350	775	1368.8			
Daturastramonium	175	325	75	100	168.8			
Polygonum convolvulus	125	125	100	75	106.3			
Total	3000	3800	2550	1825	2793.9 b			
	Maiz	e-Soybean-Wł	neat					
Chenopodium sp.	1100	1150	1175	1350	1193.8			
Amaranthus sp.	2750	2700	1650	1650	2187.5			
Daturastramonium	300	200	275	175	237.5			
Polygonum convolvulus	75	50	75	75	68.8			
Convolvulus arvensis	25			25	12.5			
Sorghum halepense	25				6.3			
Total	4275	4100	3175	3275	3706.4 b			
Average	5587.5 a	4487.5 a	3518.8 a	3118.8 b	4178.2			
LSD 0.05 plant production	LSD 0.05 plant production system = 2236.0 ; LSD 0.05 weed management method = 2447.0							
LSD 0.05 interaction $= 2$	LSD 0.05 interaction $= 2070.0$							

After one cycle of rotation, number of weed seeds was lower in autumn 2012, than in spring, over all cropping systems, Table 3. This could be connected with life cycles of prevalent weed species. Most of them are late spring weeds and they emerge when first analyse was conducted in May, and then in September their seeds was not completely matured and disseminated yet. Average number of seeds was higher in maize continuous cropping 2.0 times than in MW rotation, 2.5 times than in MWS and 1.4 times than in MSW rotation. The most abundant were broadleaf annual weed species *Chenopodium* sp., *Amaranthus* sp. and *Daturastramonium. Amaranthus* sp. accounted for 40.7% in total weed seeds number in maize continuous cropping, 52.3% in MW rotation, 45.3% in MWS and 56.8% in MSW rotation.

Table 3. Number of weed seeds (No of seeds/m ²) in different cropping systems in autumn
2012

Weed species	Herbicide treatments						
	Weedy check	RD	1⁄2 RD	Hoeing	Average		
	Maize co	ntinuous cro	pping				
Chenopodium sp.	3525	2525	2400	2725	2793.8		
Amaranthus sp.	3025	2150	2275	2300	2437.5		
Daturastramonium	550	100	175	275	275.0		
Polygonum convolvulus	25	975	650		412.5		
Hibiscus trionum	50			25	18.8		
Convolulusarvensis	25				6.3		
Solanumnigrum	150				37.5		
Sorghum halepense			25		6.3		
Total	7350	5750	5525	5325	5987.5 a		
Maize-wheat rotation							
Chenopodium sp.	900	1525	1250	700	1093.8		
Amaranthus sp.	2525	1300	1200	1175	1550.0		

Fifth International	Scientific Agricult	ural Symposium	Agrosvm 2014"
			,, o · · j · ·

Daturastramonium	275	150	375	250	262.5
Polygonum convolvulus	25	75	25	50	43.8
Sorghum halepense		25			6.3
Abuthilontheophrasti				25	6.3
Total	3725	3075	2850	2200	2962.5 b
	Maize	e- Wheat-Soyb	ean		
Chenopodium sp.	1000	1050	1025	800	968.8
Amaranthus sp.	800	1375	1200	925	1075.0
Daturastramonium	125	175	125	75	125.0
Polygonum convolvulus	225	300	100	150	193.8
Sorghum halepense			50		12.5
Total	2150	2900	2500	1950	2375.0 b
	Maiz	e-Soybean-Wh	eat		
Chenopodium sp.	1500	1525	1425	1225	1418.8
Amaranthus sp.	1450	2850	1775	3425	2375.0
Daturastramonium	200	225	150	600	293.8
Polygonum convolvulus	75	150	50	75	87.5
Convolvulus arvensis	25				6.3
Total	3250	4750	3400	5325	4181.3a
Average	4118.8ns	4118.8ns	3568.8ns	3700.0ns	3876.6

Number of weed seeds decreased in crop rotations together with herbicide application or weed removal by hoeing in spring evaluation 2013, Table 4. Total number of weed seeds was 1.7 times lower in MW, 2.1 times in MWS and 1.4 times in MSW rotation than in continuous cropping. Especially effective were MW and MWS in which, after four years, crop rotation and herbicide application decreased the number of weed seeds even in comparison to 2012. In those two production systems, even in the untreated control, number of weed seeds in the soil upper layer was significantly lower (2700 and 1425 seeds/m²) than in continuous cropping (4850 seeds/m²). The most abundant were again broadleaf weed species *Chenopodium* sp., *Amaranthus* sp. and *Daturastramonium*, esspecially *Amaranthus* sp, which participated about 50% in total weed seeds number.

	1 1 1.00		
Table 4. Number of weed	seeds in different	t cronning system	ng in gnring 2013
	socus in uniteren	t cropping system	is in spring 2015

Weed species	Herbicide treatments						
	Weedy check	RD	1⁄2 RD	Hoeing	Average		
	Maize con	ntinuous cro	pping				
Chenopodium sp.	1800	2150	1350	1425	1681.3		
Amaranthus sp.	2800	3000	1350	1250	2100.0		
Daturastramonium	250	150	125	175	175.0		
Hibiscus trionum				25	6.3		
Convolulusarvensis				25	6.3		
Polygonum convolvulus			25		6.3		
Total	4850	5300	2850	2900	3975.0 a		
Maize-wheat rotation							
Chenopodium sp.	875	1075	1125	825	975.0		
Amaranthus sp.	1575	1350	950	975	1212.5		
Daturastramonium	200	175	100	125	150.0		

Polygonum convolvulus	25	75	25		31.3		
Sorghum halepense	25			25	12.5		
Convolvulus arvensis		25			6.3		
Total	2700	2700	2200	1950	2387.5 b		
	Maize	- Wheat-Soyb	ean				
Chenopodium sp.	600	400	400	550	487.5		
Amaranthus sp.	650	2050	1050	775	1131.3		
Daturastramonium	125	125	100	150	125.0		
Polygonum convolvulus	50	100	175	75	100.0		
Sorghum halepense		75	25		25.0		
Total	1425	2750	1750	1550	1868.8 b		
	Maize	-Soybean-Wh	leat				
Chenopodium sp.	1725	950	1250	775	1175.0		
Amaranthus sp.	2200	1150	1575	1325	1562.5		
Daturastramonium	100	125	200	200	156.3		
Polygonum convolvulus	25		50	25	25.0		
Sorghum halepense			25	25	12.5		
Abuthilontheophrasti		25			6.3		
Total	4050	2250	3100	2350	2937.5 a		
Average	3256.3ns	3250.0ns	2475.0ns	2187.5ns	2792.2		
LSD 0.05 plant production	system = 139	1.0; LSD 0.05	weed manag	gement metho	d = 1532.0		
LSD 0.05 interaction $= 1131.0$							

Weed community is radically reduced under intensive application of high cropping technology (crop rotation, fertilization, herbicide application, etc.), which was obviously adequate (Barberi et al., 1998). Total number of weed species which were detected in maize field during two years (2012-2013) is between 4 and 8 species. Number of weed species was not affected by crop rotation, and even herbicide application, but number of their seeds was. Significant differences between maize continuous cropping and other cropping systems were found for number of weed seeds in the soil. The highest total number of weed seeds in average was identified in MC and the lowest in MWS rotation, in both years. Weed sandbank richness was the highest in spring 2012 (4187.2 seeds/m²), lower in autumn 2012 (3876.6 seeds/m²) and the lowest in spring 2013 (2792.2 seeds/m²). Total number of weed seeds in spring 2013 was 1.7 times higher in MC than in MW, 2.2 times than in MWS and 1.4 times than in MSW cropping system. It is also noticeable that average number of weed seeds was even lower in spring 2013 than in spring 2012, which contribute to the integrated application of crop rotation with chemical weed control (Simic et al., 2014). Broadleaf species prevailed in comparison to grasses (Table 1, 2, 3 and 4), in all production systems and homogeneity of weed seed bank community analysed from upper layer of the soil, was noticeable as it was showed in previous investigations (Barberi et al., 1998). Similar results with Amaranthus sp. seeds prevalence was noticed in previous investigation of management system influence on seed bank composition in maize crop (Barberi et al., 1998).

Crop rotation significantly reduced weed seedbank richness and the most effective was MSW rotation in both years. Application of weed control methods also affected number of weed seeds in the upper soil layer and the most effective was weed removal by hoeing. Differences in efficiency of herbicides in weed seedbank size between recommended and half dose, were not significant. The lowest values of weed seeds were obtained in MSW cropping system, in spring 2013 (in average 1868.8 seeds/m²), after four years of rotation. Wheat as a cereal crop, together with herbicides used for its production is suited better for effective weed control and

maize production than soybean. According to previous results, reduced herbicide rate together with rotations that include cereals or forage crops can facilitate suppression of some troublesome weeds (Heggenstaller and Liebman, 2005).

Conclusion

Crop rotation in combination with herbicides can reduce level of maize weed infestation in comparison to continuous cropping. The highest total number of weed seeds in average was identified in maize continuous cropping and the lowest in MWS rotation, in both years. The most abundant were broadleaf annual weed species *Chenopodium* sp., *Amaranthus* sp. and *Datura stramonium*. Results indicated that the processes affecting the weed seed bank in the fields are complex and will vary greatly based on the production practices used and the timing of their application. Because crop rotation expressed its effects after some years, the study will be continued in order to achieve more precise results.

Acknowledgments

This work was financially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia under the project TR-31037.

References

- Barberi, P., Cozzani, A., Macchia, M., Bonari, E. (1998). Size and composition of the weed seedbank under different management system for continuous maize cropping. Weed Research, Vol. 38, 319-334.
- Bastiaans, L. 2010. Crop rotation and weed management. Proceedings of 15th EWRS Symposium, 12-15 July, Kaposvar, Hungary, 244-245.
- Bohan, D.A., Powers, S.J., Champion, G., Haughton, A. J., Hawes, C., Squire, G., Cussans, J., Mertens, S. K. (2011). Modelling rotations: can crop sequences explain arable weed seed bank abundance? Weed Research, Vol. 51, 422-432.
- Liebman, M., Miller, Z.J., Williams, C.L., Westerman, P.R., Dixon, P.M., Heggenstaller, A., Davis, A.S., Menalled, F.D., Sundberg, D.N. (2014). Fates of *Setariafaberi* and *Abutilon theophrasti* seeds in three crop rotation systems. Weed Research, Vol. 54, 293-306.
- Menne, H., Köcher, H. (2012). HRAC Classification of Herbicides and Resistance Development. In: Modern Crop Protection Compounds (Eds) Krämer W., Schirmer U., Jeschke P. And Witschel M., Vol. 1: Herbicides, pp. 5-28, Wiley-VCH, VerlagGmbH&Co.KgaA.
- Mohler, C.L. (2001). Weed life hystory: identifying vulnerabilities. *In*: Ecological Management of Agricultural Weeds (eds.) Liebman, M., Mohler, C. L., Steaver, C. P.), 40-98. Cambridge University Press, Cambridge, UK.
- Schreiber, M.M. (2004). Influence of tillage, crop rotation, and weed management on giant foxtail (*Setariafaberi*) population dynamics and corn yield. Weed Science, 40, 645-653.
- Simi , M., Spasojevi , I., Brankov, M., Dragi evi , V. (2014). Integrisanaprimenaplodoreda i herbicida za kontrolukorova u kukuruzu. Biljnilekar, Vol. 42, (*in press*).
- Swanton, J. C., Weise, F. S. (1991). Interated Weed Management: The Rationale and Approach. Weed Technology, Vol. 5, 657-663.
- Teasdale, J.R., Mangum, R.W., Radhakrishnan, J., Cavigelli, M.A. (2004). Weed seed bank dynamics in three organic farming crop rotations. Agronomy Journal, Vol. 96, 1429-1435.